In this tutorial, we will develop a node that controls our vessel in an open-loop manner.
After completing this tutorial, you will be able to:
Develop a controller that executes a turning circle maneuver
Develop a controller that executes a zigzag maneuver
Develop a controller that executes a spiral maneuver
21.1 Getting Started
We will be using the same repository as the previous tutorial. Once the previous tutorial deadline is over, your instructor will update the upstream repository with the necessary files for this tutorial and raise a pull request on your team repository. You will need to pull in the changes from the upstream repository to your team repository to start this tutorial. The instructions to pull in the changes are given in Appendix B.
After you complete the steps shown in Appendix B to synchronize your repository with the upstream repository, navigate to the root directory of your repository. Pull the latest changes made to your team repository onto your local machine.
cd <your-repository-name>
git pull origin main
The relevant folder structure of the repository for this tutorial is shown below.
All your group members can work independently on their own branches. However, you will have to merge your branches back to the main branch before the end of the tutorial. We learnt how to do this in Chapter 14 using pull requests.
First start docker desktop and then follow the instructions below to run the course docker container. Make sure to navigate in the terminal to the root folder of your repository.
For Windows:
./ros2_run_devdocker.bat
For Ubuntu (or MacOS):
./ros2_run_devdocker.sh
Source the ROS 2 environment by running the following command:
sros2
Notice that this is an alias for sourcing your ROS 2 workspace as well as the ROS 2 installation in the docker container. Remember that every time you perform a colcon build on your workspace, you need to source the ROS 2 environment again with the command above.
21.2 Create a new ROS2 package
Create a new ROS2 package inside /workspaces/mavlab/ros2_ws/src/student/tut_09
cd /workspaces/mavlab/ros2_ws/src/student/tut_09ros2 pkg create --build-type ament_python mav_openloop_controller --dependencies rclpy std_msgs nav_msgs sensor_msgs geometry_msgs --license MIT
21.3 Create a new node
Create a three nodes inside the package mav_openloop_controller
cd /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controller/mav_openloop_controllertouch mav_turning_circle.pytouch mav_zigzag.pytouch mav_spiral.pytouch module_control.py
Copy the following code into the mav_turning_circle.py file:
Code
import rclpyfrom rclpy.node import Nodefrom nav_msgs.msg import Odometryfrom std_msgs.msg import Float64import syssys.path.append('/workspaces/mavlab/')from ros2_ws.src.student.tut_03.module_kinematics import quat_to_eulfrom ros2_ws.src.student.tut_09.mav_openloop_controller.mav_openloop_controller import module_control as conimport numpy as npclass MAVTurningCircleController(Node):def__init__(self):super().__init__('mav_turning_circle_controller')# Create subscriber for odometryself.odom_sub =self.create_subscription( Odometry,'mav_odom',self.odom_callback,10)# Create publisher for rudder commandself.rudder_pub =self.create_publisher( Float64,'mav_rudder_command',10)# Initialize timeself.start_time =self.get_clock().now()# Select control modeself.control_mode = con.turning_circleself.get_logger().info('MAV Turning Circle Controller initialized')def odom_callback(self, msg):# Get current time in seconds current_time =self.get_clock().now() t = (current_time -self.start_time).nanoseconds /1e9 quat = np.array([ msg.pose.pose.orientation.w, msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z ]) eul = quat_to_eul(quat, order='ZYX')# Create state vector from odometry state = np.array([ msg.twist.twist.linear.x, msg.twist.twist.linear.y, msg.twist.twist.linear.z, msg.twist.twist.angular.x, msg.twist.twist.angular.y, msg.twist.twist.angular.z, msg.pose.pose.position.x, msg.pose.pose.position.y, msg.pose.pose.position.z, eul[0], eul[1], eul[2],0.0# rudder angle ])# Calculate control command rudder_cmd =self.control_mode(t, state, delta0=35.0)# Publish command cmd_msg = Float64() cmd_msg.data =float(rudder_cmd)self.rudder_pub.publish(cmd_msg)# Log infoself.get_logger().info(f'\nTime: {t:.2f}s\n'f'Rudder Command: {rudder_cmd*180/np.pi:.2f} deg\n' )def main(args=None): rclpy.init(args=args) controller = MAVTurningCircleController() rclpy.spin(controller) controller.destroy_node() rclpy.shutdown()if__name__=='__main__': main()
Copy the following code into the mav_zigzag.py file:
Code
import rclpyfrom rclpy.node import Nodefrom nav_msgs.msg import Odometryfrom std_msgs.msg import Float64import syssys.path.append('/workspaces/mavlab/')from ros2_ws.src.student.tut_09.mav_openloop_controller.mav_openloop_controller import module_control as confrom ros2_ws.src.student.tut_03.module_kinematics import quat_to_eulimport numpy as npclass MAVZigzagController(Node):def__init__(self):super().__init__('mav_zigzag_controller')# Create subscriber for odometryself.odom_sub =self.create_subscription( Odometry,'mav_odom',self.odom_callback,10)# Create publisher for rudder commandself.rudder_pub =self.create_publisher( Float64,'mav_rudder_command',10)# Initialize timeself.start_time =self.get_clock().now()# Select control modeself.control_mode = con.zigzagself.get_logger().info('MAV Zigzag Controller initialized')def odom_callback(self, msg):# Get current time in seconds current_time =self.get_clock().now() t = (current_time -self.start_time).nanoseconds /1e9 quat = np.array([ msg.pose.pose.orientation.w, msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z ]) eul = quat_to_eul(quat, order='ZYX')# Create state vector from odometry state = np.array([ msg.twist.twist.linear.x, msg.twist.twist.linear.y, msg.twist.twist.linear.z, msg.twist.twist.angular.x, msg.twist.twist.angular.y, msg.twist.twist.angular.z, msg.pose.pose.position.x, msg.pose.pose.position.y, msg.pose.pose.position.z, eul[0], eul[1], eul[2],0.0# rudder angle ])# Calculate control command rudder_cmd =self.control_mode(t, state, delta0=20.0, psi0=10.0)# Publish command cmd_msg = Float64() cmd_msg.data =float(rudder_cmd)self.rudder_pub.publish(cmd_msg)# Log infoself.get_logger().info(f'\nTime: {t:.2f}s\n'f'Rudder Command: {rudder_cmd*180/np.pi:.2f} deg\n' )def main(args=None): rclpy.init(args=args) controller = MAVZigzagController() rclpy.spin(controller) controller.destroy_node() rclpy.shutdown()if__name__=='__main__': main()
Copy the following code into the mav_spiral.py file:
Code
import rclpyfrom rclpy.node import Nodefrom nav_msgs.msg import Odometryfrom std_msgs.msg import Float64import syssys.path.append('/workspaces/mavlab/')from ros2_ws.src.student.tut_09.mav_openloop_controller.mav_openloop_controller import module_control as confrom ros2_ws.src.student.tut_03.module_kinematics import quat_to_eulimport numpy as npclass MAVSpiralController(Node):def__init__(self):super().__init__('mav_spiral_controller')# Create subscriber for odometryself.odom_sub =self.create_subscription( Odometry,'mav_odom',self.odom_callback,10)# Create publisher for rudder commandself.rudder_pub =self.create_publisher( Float64,'mav_rudder_command',10)# Initialize timeself.start_time =self.get_clock().now()# Select control modeself.control_mode = con.spiralself.get_logger().info('MAV Spiral Controller initialized')def odom_callback(self, msg):# Get current time in seconds current_time =self.get_clock().now() t = (current_time -self.start_time).nanoseconds /1e9 quat = np.array([ msg.pose.pose.orientation.w, msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z ]) eul = quat_to_eul(quat, order='ZYX')# Create state vector from odometry state = np.array([ msg.twist.twist.linear.x, msg.twist.twist.linear.y, msg.twist.twist.linear.z, msg.twist.twist.angular.x, msg.twist.twist.angular.y, msg.twist.twist.angular.z, msg.pose.pose.position.x, msg.pose.pose.position.y, msg.pose.pose.position.z, eul[0], eul[1], eul[2],0.0# rudder angle ])# Calculate control command rudder_cmd =self.control_mode(t, state, wait_time=10.0, start_angle=-35.0, end_angle=35.0, increment=5.0)# Publish command cmd_msg = Float64() cmd_msg.data =float(rudder_cmd)self.rudder_pub.publish(cmd_msg)# Log infoself.get_logger().info(f'\nTime: {t:.2f}s\n'f'Rudder Command: {rudder_cmd*180/np.pi:.2f} deg\n' )def main(args=None): rclpy.init(args=args) controller = MAVSpiralController() rclpy.spin(controller) controller.destroy_node() rclpy.shutdown()if__name__=='__main__': main()
Copy the following code into the module_control.py file:
Code
import numpy as np"""Rudder control module for vessel simulation.This module provides different rudder control strategies for vessel steering."""def ssa(ang, deg=False):""" Smallest signed angle that lies between -pi and pi. If deg is True, the angle is assumed to be in degrees and is converted to radians. If deg is False, the angle is assumed to be in radians. Args: ang (float): Angle in degrees or radians deg (bool): If True, the angle is assumed to be in degrees Returns: float: Smallest signed angle between -pi and pi. The angle is in radians if deg is False, and in degrees if deg is True. """#===========================================================================# TODO: Implement the ssa function#===========================================================================# Write your code herepass#===========================================================================return angdef turning_circle(t, state, delta0):""" Implement a turning circle control strategy. For the first 20 seconds, the rudder is fixed at 0 degrees. After 20 seconds, the rudder is fixed at user-defined angle delta0. Args: t (float): Current simulation time [s] state (ndarray): Current vessel state vector delta0 (float): User-defined rudder angle in degrees Returns: float: Commanded rudder angle in radians """ delta_c =0.0#===========================================================================# TODO: Implement the turning circle control#===========================================================================# Write your code herepass#===========================================================================return delta_cdef zigzag(t, state, delta0, psi0):""" Implement a zigzag control strategy. For the first 20 seconds, the rudder is fixed at 0 degrees. After 20 seconds, the rudder is moved to a user-defined angle delta0. The rudder is held at this angle until the vessel has turned by a user-defined heading angle psi0. Then the rudder is moved to -delta0 and held at this angle until the vessel has turned to -psi0. This cycle repeats indefinitely. Args: t (float): Current simulation time [s] state (ndarray): Current vessel state vector delta0 (float): User-defined rudder angle in degrees psi0 (float): User-defined heading angle in degrees Returns: float: Commanded rudder angle in radians """ delta_c =0.0# Get current heading from state vector (index 11 is the yaw/heading angle) psi = state[11]# Convert user-defined angles to radians delta0_rad = delta0 * np.pi /180.0 psi0_rad = psi0 * np.pi /180.0# Static variable to track the current phase of zigzagifnothasattr(zigzag, "phase"): zigzag.phase =0# 0: initial, 1: turning starboard, 2: turning port zigzag.initial_heading = psi#===========================================================================# TODO: Implement the zigzag control#===========================================================================# Write your code inside the following block# Initial phase (first 20 seconds)if t <=20: delta_c =0.0else:# After 20 seconds, start zigzag maneuverif zigzag.phase ==0:# Start turning starboard delta_c =0.0 zigzag.phase =1elif zigzag.phase ==1:# Continue turning starboard until reaching psi0 delta_c =0.0# Check if we've turned enough to the starboard elif zigzag.phase ==2:# Continue turning port until reaching -psi0 delta_c =0.0# Check if we've turned enough to the port #===========================================================================return delta_cdef spiral(t, state, wait_time, start_angle, end_angle, increment):""" Implement a spiral control strategy. For the first 20 seconds, the rudder is fixed at 0 degrees. After 20 seconds, the rudder is moved to a user-defined start angle. The rudder is then incrementally increased by a user-defined increment until the end angle is reached. The rudder is held at each incremented angle for a user-defined wait time. The rudder is returned to zero after the end angle is reached. Args: t (float): Current simulation time [s] state (ndarray): Current vessel state vector wait_time (float): Time to wait before incrementing the rudder angle [s] start_angle (float): User-defined start angle in degrees end_angle (float): User-defined end angle in degrees increment (float): User-defined increment in degrees Returns: float: Commanded rudder angle in radians """# Verify that increment is in the correct directionif start_angle < end_angle and increment <=0:raiseValueError("Increment must be positive when start_angle is less than end_angle")elif start_angle > end_angle and increment >=0:raiseValueError("Increment must be negative when start_angle is greater than end_angle")elif increment ==0:raiseValueError("Increment must be non-zero") delta_c =0.0#===========================================================================# TODO: Implement the spiral control#===========================================================================# Write your code herepass#===========================================================================return delta_c
The three files mav_turning_circle.py, mav_zigzag.py and mav_spiral.py each start a ROS2 node that subscribes to the odometry data from the topic mav_odom and publishes the rudder angle to the topic mav_rudder_command. Each of these nodes implements a different control strategy. The module_control.py file contains the implementation of the three control strategies that you need to complete.
21.3.1 Implentation Tasks
There are four tasks to complete in this tutorial. In each of these tasks, the vessel state vector is assumed to be \(13 \times 1\) vector as defined in Chapter 15. The first three elements denote the components of the linear velocity of the vessel in the BCS. The next three elements denote the components of the angular velocity of the vessel in the BCS. The next three elements denote the position of the vessel in the GCS. The next three elements denote the Euler angles of the vessel in the GCS. The last element denotes the actual rudder angle.
Task 1: Complete the ssa function
Location:module_control.py, ssa() function
Description: The ssa() function computes the smallest signed angle that lies between \(-\pi\) and \(\pi\). Thus if an angle of \(350^\circ\) is input (with input option deg=True), the function returns a value of \(-5^\circ\). If instead the angle is input in radians (with input option deg=False), the function returns a value of \(-\pi + 0.174533\) radians.
Input:
ang: Angle in degrees or radians
deg: If True, the angle is assumed to be in degrees and is converted to radians. If False, the angle is assumed to be in radians.
Output:
ang_rad: Smallest signed angle between \(-\pi\) and \(\pi\) if deg is False, and between \(-180^\circ\) and \(180^\circ\) if deg is True.
Task 2: Complete the turning_circle function
Location:module_control.py, turning_circle() function
Description: The turning_circle() function implements a turning circle control strategy. For the first \(20\) seconds, the rudder is fixed at \(0^\circ\). After \(20\) seconds, the rudder is fixed at a user-defined angle \(\delta_0\). We call upon this function from the mav_turning_circle.py node with a value of \(\delta_0 = 35^\circ\).
Input:
t: Current simulation time [s]
state: Current vessel state vector
delta0: User-defined rudder angle in degrees
Output:
delta_c: Commanded rudder angle in radians
Task 3: Complete the zigzag function
Location:module_control.py, zigzag() function
Description: The zigzag() function implements a zigzag control strategy. For the first \(20\) seconds, the rudder is fixed at \(0^\circ\). After \(20\) seconds, the rudder is moved to a user-defined angle \(\delta_0\). The rudder is held at this angle until the vessel has turned by a user-defined heading angle \(\psi_0\). Then the rudder is moved to \(-\delta_0\) and held at this angle until the vessel has turned to \(-\psi_0\). This cycle repeats indefinitely. We call upon this function from the mav_zigzag.py node with a value of \(\delta_0 = 20^\circ\) and \(\psi_0 = 10^\circ\).
Input:
t: Current simulation time [s]
state: Current vessel state vector
delta0: User-defined rudder angle in degrees
psi0: User-defined heading angle in degrees
Output:
delta_c: Commanded rudder angle in radians
Task 4: Complete the spiral function
Location:module_control.py, spiral() function
Description: The spiral() function implements a spiral control strategy. For the first \(20\) seconds, the rudder is fixed at \(0^\circ\). After \(20\) seconds, the rudder is moved to a user-defined start angle. The rudder is then incrementally increased by a user-defined increment until the end angle is reached. The rudder is held at each incremented angle for a user-defined wait time. The rudder is returned to zero after the end angle is reached. We call upon this function from the mav_spiral.py node with a wait time of \(10\) seconds, start angle of \(-35^\circ\), end angle of \(35^\circ\), and increment of \(5^\circ\).
Input:
t: Current simulation time [s]
state: Current vessel state vector
wait_time: Time to wait before incrementing the rudder angle [s]
start_angle: User-defined start angle in degrees
end_angle: User-defined end angle in degrees
increment: User-defined increment in degrees
Output:
delta_c: Commanded rudder angle in radians
21.4 Create launch files
Create launch files for each control strategy inside /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controller/mav_openloop_controller/launch
cd /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controller/mkdir launchcd launchtouch mav_turning_circle_launch.pytouch mav_zigzag_launch.pytouch mav_spiral_launch.py
Copy the following code into the mav_turning_circle_launch.py file:
Code
from launch import LaunchDescriptionfrom launch.actions import ExecuteProcess, IncludeLaunchDescriptionfrom launch.launch_description_sources import AnyLaunchDescriptionSourcefrom launch_ros.substitutions import FindPackageSharefrom launch.substitutions import PathJoinSubstitutionfrom launch_ros.actions import Nodedef generate_launch_description():# Path to the rosbridge launch file rosbridge_launch = PathJoinSubstitution([ FindPackageShare('rosbridge_server'),'launch','rosbridge_websocket_launch.xml' ])# Path to the built web directory web_build_dir = PathJoinSubstitution([ FindPackageShare('mav_openloop_controller'),'web' ])return LaunchDescription([# Start the HTTP server to serve web files ExecuteProcess( cmd=['python3', '-m', 'http.server', '8000', '--directory', web_build_dir], name='http_server', output='screen' ),# Start the rosbridge server IncludeLaunchDescription( AnyLaunchDescriptionSource(rosbridge_launch) ),# Start the MAV simulator Node( package='mav_simulator', executable='mav_simulate', name='mav_simulate', output='screen' ),# Start the MAV turning circle controller Node( package='mav_openloop_controller', executable='mav_turning_circle', name='mav_turning_circle', output='screen' ), ])
Copy the following code into the mav_zigzag_launch.py file:
Code
from launch import LaunchDescriptionfrom launch.actions import ExecuteProcess, IncludeLaunchDescriptionfrom launch.launch_description_sources import AnyLaunchDescriptionSourcefrom launch_ros.substitutions import FindPackageSharefrom launch.substitutions import PathJoinSubstitutionfrom launch_ros.actions import Nodedef generate_launch_description():# Path to the rosbridge launch file rosbridge_launch = PathJoinSubstitution([ FindPackageShare('rosbridge_server'),'launch','rosbridge_websocket_launch.xml' ])# Path to the built web directory web_build_dir = PathJoinSubstitution([ FindPackageShare('mav_openloop_controller'),'web' ])return LaunchDescription([# Start the HTTP server to serve web files ExecuteProcess( cmd=['python3', '-m', 'http.server', '8000', '--directory', web_build_dir], name='http_server', output='screen' ),# Start the rosbridge server IncludeLaunchDescription( AnyLaunchDescriptionSource(rosbridge_launch) ),# Start the MAV simulator Node( package='mav_simulator', executable='mav_simulate', name='mav_simulate', output='screen' ),# Start the MAV turning circle controller Node( package='mav_openloop_controller', executable='mav_zigzag', name='mav_zigzag', output='screen' ), ])
Copy the following code into the mav_spiral_launch.py file:
Code
from launch import LaunchDescriptionfrom launch.actions import ExecuteProcess, IncludeLaunchDescriptionfrom launch.launch_description_sources import AnyLaunchDescriptionSourcefrom launch_ros.substitutions import FindPackageSharefrom launch.substitutions import PathJoinSubstitutionfrom launch_ros.actions import Nodedef generate_launch_description():# Path to the rosbridge launch file rosbridge_launch = PathJoinSubstitution([ FindPackageShare('rosbridge_server'),'launch','rosbridge_websocket_launch.xml' ])# Path to the built web directory web_build_dir = PathJoinSubstitution([ FindPackageShare('mav_openloop_controller'),'web' ])return LaunchDescription([# Start the HTTP server to serve web files ExecuteProcess( cmd=['python3', '-m', 'http.server', '8000', '--directory', web_build_dir], name='http_server', output='screen' ),# Start the rosbridge server IncludeLaunchDescription( AnyLaunchDescriptionSource(rosbridge_launch) ),# Start the MAV simulator Node( package='mav_simulator', executable='mav_simulate', name='mav_simulate', output='screen' ),# Start the MAV turning circle controller Node( package='mav_openloop_controller', executable='mav_spiral', name='mav_spiral', output='screen' ), ])
Each launch file will start a HTTP server to serve the web files and a rosbridge server to communicate with the ROS 2 nodes. As we will be using javascript to visualize the data in our web application, we need to start the rosbridge server to communicate with the ROS 2 nodes. We also start the MAV simulator node from the mav_simulator package we developed in Chapter 16. Finally we start the open-loop controller nodes from the mav_openloop_controller package.
21.5 Create a new web directory
Create a new web directory inside /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controller
cd /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controllermkdir web
Create a new index.html file inside /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controller/web
cd /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controller/webtouch index.html
Copy the following code into the index.html file:
<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"/><title>Live Odometry Visualization</title><!-- Include Chart.js (from CDN or your local node_modules build) --><script src="https://cdn.jsdelivr.net/npm/chart.js"></script><!-- Include ROSLIBJS (from your node_modules or a CDN) --><script src="https://cdnjs.cloudflare.com/ajax/libs/roslibjs/1.1.0/roslib.min.js" integrity="sha512-x2Owc9WayRcRj80Znkau58shVfXN2OIX+gQAlrx6KPugZBKrIC6AwgEWQQCI06p2Q8RB4ilxD+y+1BdNd+1fQA==" crossorigin="anonymous" referrerpolicy="no-referrer"></script><style> body {font-family:'Segoe UI',Tahoma,Geneva,Verdana,sans-serif;max-width:1200px;margin:0auto;padding:20px;background-color:#f5f5f5; } h1, h2 {color:#2c3e50;text-align:center;margin-top:30px; } h1 {font-size:2.5em;margin-bottom:40px;border-bottom:2pxsolid#3498db;padding-bottom:10px; }.chart-container {background:white;border-radius:10px;box-shadow:04px6pxrgba(0,0,0,0.1);padding:20px;margin:20pxauto;max-width:800px; } canvas {max-width:100%;height:auto;margin:10pxauto;display:block; }</style></head><body><h1>Odometry Data Visualization</h1><div class="chart-container"><h2>Path</h2><canvas id="pathChart"></canvas></div><div class="chart-container"><h2>Position (m)</h2><canvas id="positionChart"></canvas></div><div class="chart-container"><h2>Velocity (m/s)</h2><canvas id="velocityChart"></canvas></div><div class="chart-container"><h2>Angular Velocity (rad/s)</h2><canvas id="angularVelocityChart"></canvas></div><div class="chart-container"><h2>Euler Angles (degrees)</h2><canvas id="orientationChart"></canvas></div><div class="chart-container"><h2>Rudder (degrees)</h2><canvas id="rudderChart"></canvas></div><!-- Main JavaScript file --><script src="main.js"></script></body></html>
Create a new main.js file inside /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controller/web
cd /workspaces/mavlab/ros2_ws/src/student/tut_09/mav_openloop_controller/webtouch main.js
Copy the following code into the main.js file:
// Connect to rosbridge websocket (adjust the URL as needed)var ros =new ROSLIB.Ros({url:'ws://localhost:9090' }); ros.on('connection',function () {console.log('Connected to rosbridge.'); }); ros.on('error',function (error) {console.error('Error connecting to rosbridge: ', error); });// Create a subscriber to the /imu/data topicvar odomTopic =new ROSLIB.Topic({ros: ros,name:'/mav_odom',messageType:'nav_msgs/Odometry' });var rudderTopic =new ROSLIB.Topic({ros: ros,name:'/mav_rudder',messageType:'std_msgs/Float64' });// Helper: convert quaternion to Euler anglesfunctionquaternionToEuler(q) {var x = q.x, y = q.y, z = q.z, w = q.w;var sinr_cosp =2* (w * x + y * z);var cosr_cosp =1-2* (x * x + y * y);var roll =Math.atan2(sinr_cosp, cosr_cosp) *180/Math.PI;var sinp =2* (w * y - z * x);var pitch =Math.abs(sinp) >=1?Math.sign(sinp) *Math.PI/2:Math.asin(sinp) *180/Math.PI;var siny_cosp =2* (w * z + x * y);var cosy_cosp =1-2* (y * y + z * z);var yaw =Math.atan2(siny_cosp, cosy_cosp) *180/Math.PI;return { roll: roll,pitch: pitch,yaw: yaw }; }// Set up Chart.js chartsfunctioncreateChart(ctx, label, borderColor) {returnnewChart(ctx, {type:'line',data: {labels: [],// time or sample indexdatasets: [{label: label,data: [],borderColor: borderColor,fill:false,tension:0.1, }] },options: {animation:false,responsive:true,scales: { x: { display:false } } } }); }// Get canvas contextsvar pathCtx =document.getElementById('pathChart').getContext('2d');var positionCtx =document.getElementById('positionChart').getContext('2d');var velocityCtx =document.getElementById('velocityChart').getContext('2d');var orientationCtx =document.getElementById('orientationChart').getContext('2d');var angularVelocityCtx =document.getElementById('angularVelocityChart').getContext('2d');var rudderCtx =document.getElementById('rudderChart').getContext('2d');// Create charts for each data type.var pathChart =newChart(pathCtx, {type:'scatter',data: {datasets: [{label:'Path',data: [],borderColor:'red',backgroundColor:'red',showLine:true,fill:false }] },options: {animation:false,responsive:true,aspectRatio:1,scales: {x: { display:true,title: { display:true,text:'X Position' } },y: { display:true,title: { display:true,text:'Y Position' } } } } });// For acceleration and angular velocity, we use one chart per topic (each with three datasets for x, y, z).var positionChart =newChart(positionCtx, {type:'line',data: {labels: [],datasets: [ { label:'x',data: [],borderColor:'red',fill:false }, { label:'y',data: [],borderColor:'green',fill:false }, { label:'z',data: [],borderColor:'blue',fill:false }, ] },options: { animation:false,responsive:true,scales: { x: { display:false } } } });var velocityChart =newChart(velocityCtx, {type:'line',data: {labels: [],datasets: [ { label:'u',data: [],borderColor:'red',fill:false }, { label:'v',data: [],borderColor:'green',fill:false }, { label:'w',data: [],borderColor:'blue',fill:false }, ] },options: { animation:false,responsive:true,scales: { x: { display:false } } } });// Create one chart for all orientation anglesvar orientationChart =newChart(orientationCtx, {type:'line',data: {labels: [],datasets: [ { label:'Roll',data: [],borderColor:'red',fill:false }, { label:'Pitch',data: [],borderColor:'green',fill:false }, { label:'Yaw',data: [],borderColor:'blue',fill:false }, ] },options: { animation:false,responsive:true,scales: { x: { display:false } } } });var angularVelocityChart =newChart(angularVelocityCtx, {type:'line',data: {labels: [],datasets: [ { label:'p',data: [],borderColor:'red',fill:false }, { label:'q',data: [],borderColor:'green',fill:false }, { label:'r',data: [],borderColor:'blue',fill:false }, ] },options: { animation:false,responsive:true,scales: { x: { display:false } } } });var rudderChart =newChart(rudderCtx, {type:'line',data: {labels: [],datasets: [ { label:'delta',data: [],borderColor:'red',fill:false } ] },options: { animation:false,responsive:true,scales: { x: { display:false } } } });var sampleIndex =0;functionupdatePathChart(x, y) { pathChart.data.datasets[0].data.push({x: x,y: y});if (pathChart.data.datasets[0].data.length>100) { pathChart.data.datasets[0].data.shift(); } pathChart.update(); }functionupdatePositionChart(x, y, z) { positionChart.data.labels.push(sampleIndex); positionChart.data.datasets[0].data.push(x); positionChart.data.datasets[1].data.push(y); positionChart.data.datasets[2].data.push(z);if (positionChart.data.labels.length>100) { positionChart.data.labels.shift(); positionChart.data.datasets.forEach(ds => ds.data.shift()); } positionChart.update(); }functionupdateVelocityChart(u, v, w) { velocityChart.data.labels.push(sampleIndex); velocityChart.data.datasets[0].data.push(u); velocityChart.data.datasets[1].data.push(v); velocityChart.data.datasets[2].data.push(w);if (velocityChart.data.labels.length>100) { velocityChart.data.labels.shift(); velocityChart.data.datasets.forEach(ds => ds.data.shift()); } velocityChart.update(); }functionupdateAngularVelocityChart(p, q, r) { angularVelocityChart.data.labels.push(sampleIndex); angularVelocityChart.data.datasets[0].data.push(p); angularVelocityChart.data.datasets[1].data.push(q); angularVelocityChart.data.datasets[2].data.push(r);if (angularVelocityChart.data.labels.length>100) { angularVelocityChart.data.labels.shift(); angularVelocityChart.data.datasets.forEach(ds => ds.data.shift()); } angularVelocityChart.update(); }functionupdateOrientationChart(roll, pitch, yaw) { orientationChart.data.labels.push(sampleIndex); orientationChart.data.datasets[0].data.push(roll); orientationChart.data.datasets[1].data.push(pitch); orientationChart.data.datasets[2].data.push(yaw);if (orientationChart.data.labels.length>100) { orientationChart.data.labels.shift(); orientationChart.data.datasets.forEach(ds => ds.data.shift()); } orientationChart.update(); }functionupdateRudderChart(delta) { rudderChart.data.labels.push(sampleIndex); rudderChart.data.datasets[0].data.push(delta);if (rudderChart.data.labels.length>100) { rudderChart.data.labels.shift(); rudderChart.data.datasets.forEach(ds => ds.data.shift()); } rudderChart.update(); }// Subscribe to the /imu/data topic odomTopic.subscribe(function (message) {// Increment our sample index for the x-axis sampleIndex++;// Extract accelerations and angular velocitiesvar x = message.pose.pose.position.x;var y = message.pose.pose.position.y;var z = message.pose.pose.position.z;var u = message.twist.twist.linear.x;var v = message.twist.twist.linear.y;var w = message.twist.twist.linear.z;var p = message.twist.twist.angular.x;var q = message.twist.twist.angular.y;var r = message.twist.twist.angular.z;// Convert quaternion to Euler anglesvar euler =quaternionToEuler(message.pose.pose.orientation);// returns {roll, pitch, yaw}// Update the chartsupdatePathChart(x, y);updatePositionChart(x, y, z);updateVelocityChart(u, v, w);updateAngularVelocityChart(p, q, r);updateOrientationChart(euler.roll, euler.pitch, euler.yaw); }); rudderTopic.subscribe(function (message) {var delta = message.data;updateRudderChart(delta); });
The main.js file is a javascript file that will be used to visualize the data in our web application. It contains subscribers to the topics mav_odom and mav_rudder and a function to update the charts with the latest data.
21.6 Modify the setup.py file
Replace the existing code in the setup.py file with the following code:
Open the web application by navigating to the following URL:
http://localhost:8000
You should see the data from the odometry topic being visualized in the web application. The above command should result in the vehicle performing a turning circle.
Repeat the same steps for the mav_zigzag and mav_spiral launch files. Make sure to stop the already running launch file before running a new one.
21.9 Evaluation
The evaluation of the tutorial will be performed in the classroom. Notice that this is a group activity. You will be working in a group of 4 students. The evaluation will be performed on the group level. In order to pass the tutorial, the group must pass all the tests in the GitHub Actions workflow and also be able to answer all the questions during the evaluation in the classroom. Those who are not present in the classroom on the day of evaluation will not be able to participate in the evaluation and will automatically fail the tutorial.
While one of the objectives of these tutorials is to give you hands on experience with coding and practical implementation, the more important goal is to help you relate what you are doing in your tutorials to the underlying concepts discussed in the class. Therefore, while you are working on the implementation tasks, make sure you are also thinking about the underlying concepts and how they are being applied in the code.
Some questions to think about while you are working on the implementation tasks:
What seems to the steady turning radius for the turning circle?
What is the overshoot value in the zigzag maneuver?
From the spiral maneuver can you comment if the vessel is straight line stable or not?
Can we implement these open-loop tests in our wave basin (size \(L = 30\) m \(\times\)\(B = 30\) m)?
In the zigzag maneuver, is the switch of the rudder happening at the correct time? Which plots do we need to observe to answer this question?
21.10 Instructor Feedback through Pull Requests
Commit your changes to the remote repository often. This will help you to track your progress and also help you to revert to a working version if you make a mistake. In addition, the instructor and TA will be able to provide you with feedback on your code through the Feedback pull request available in your repository. Please do not close this pull request.